γδ T-Cells in
Chronic Myeloid Leukemia
γδ T-Cells in Endometriosis
γδ T-Cells in Multiple Myeloma
γδ T-Cells in Glioblastoma
γδ T-Cells in Multiple Myeloma
γδ T-Cells in
CMV reactivation
Myc 9aaTAD Activation Domain binds to Mediator of Transcription with superior high Affinity
Knight A, Houser J, Otasevic T, Juran V, Vybihal V, Smrcka M, Piskacek M
Molecular Medicine (2024) doi.org/10.1186/s10020-024-00896-7
​
The NFkB activation domain is 14-amino-acid-long variant of the 9aaTAD
Houser J, Jendruchova K, Knight A and Piskacek M
Biochemical Journal (2023) doi.org/10.1042/BCJ20220605
​
Knight A, Piskacek M, Jurajda M, Prochazkova J, Racil Z, Zackova D, Mayer J
Cancer Immunology, Immunotherapy (2023) doi.org/10.1007/s00262-022-03312-3
​
Cryptic inhibitory regions nearby activation domains
Knight A and Piskacek M
Biochimie (2022) doi.org/10.1016/j.biochi.2022.05.004
​
Hudecek R, Kohlova B, Siskova I, Piskacek M, Knight A
Frontiers in Immunology (2021) doi.org/10.3389/fimmu.2021.752646
​
Plasmacytoid dendritic cells in patients with MGUS and Multiple Myeloma
Knight A, Rihova L, Kralova R, Penka M, Adam Z, Pour L, Piskacek M and Hajek R
Journal of Clinical Medicine (2021) doi.org/10.3390/jcm10163717
​
The 9aaTAD activation domains in the four Yamanaka Oct4, Sox2, Myc, and Klf4 transcription factors
Piskacek M, Otasevic T, Repko M, Knight A
Stem Cell Rev and Rep (2021) doi.org/10.1007/s12015-021-10225-8
Full version on www.biorxiv.org/content/10.1101/2019.12.15.876706v1.full.pdf
​
Universal two-point interaction of mediator KIX with 9aaTAD activation domains
Hofrova A, Lousa P, Kubickova M, Hritz J, Otasevic T, Repko M, Knight A and Piskacek M
Journal of Cellular Biochemistry (2021) doi.org/10.1002/jcb.30075​
​
Piskacek M, Havelka M, Jendruchova K, Knight A, Keegan LP
Cellular and Molecular Life Sciences (2019) doi.org/10.1007/s00018-019-03251-w
​
​​​Nuclear Hormone Receptors: ancient 9aaTAD and evolutionally gained NCoA Activation Pathways
Piskacek M, Havelka M, Jendruchova K, Knight A
Journal of Steroid Biochemistry and Molecular Biology (2018) doi.org/10.1016/j.jsbmb.2018.11.008
​
The 9aaTAD is exclusive activation domain in Gal4
Piskacek M, Havelka M, Rezacova M, Knight A
PlosOne (2017) doi.org/10.1371/journal.pone.0169261
​
​​​Gal4 activation domain 9aaTAD could be inactivated by adjacent mini-inhibitory domain
and reactivated by distal re-activation domain
Piskacek M, Havelka M, Rezacova M, Knight A
BioRxiv (2017) doi.org/10.1101/110882
​
The 9aaTAD Transactivation Domains: from Gal4 to p53
Piskacek M, Havelka M, Rezacova M, Knight A
PlosOne (2016) doi.org/10.1371/journal.pone.0162842
​
Shared structural features of the 9aaTAD family in complex with CBP
Piskacek M, Vasku A, Hajek R and Knight A
Molecular BioSystems (2014) doi.org/10.1039/c4mb00672k
​​
CMV-independent lysis of glioblastoma by ex vivo expanded/activated Vδ1+ γδ T cells.
Knight A, Arnouk H, Britt W, Gillespie GY, Cloud GA, Harkins L, Su Y, Lowdell MW, Lamb LS
PLoS One (2013)​ doi.org/journal.pone.0068729
​
Knight A, Mackinnon S, Lowdell MW
Cytotherapy (2012)​ doi.org/10.3109/14653249.2012.700766
​
Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S, Travers PJ, Lowdell MW
Blood (2010)​ doi.org/10.1182/blood-2010-01-255166
​
Rsp5 promotes Gene Activation mediated by 9aaTAD Transcription Factors Oaf1 and Gal4
Lipp J, Koranda M, Piskacek M
Nature Precedings (2009) doi.org/10.1038/npre.2009.3968.1
​
A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18
Sandholzer J, Hoeth M, Piskacek M, Mayer H, de Martin R
Biochem Biophys Res Commun (2007)​ doi.org/10.1016/j.bbrc.2007.06.095
​
9aaTAD Prediction result (2006)
Piskacek M
Nature Precedings (2009)​ doi.org/10.1038/npre.2009.3984.1
​
Nine-amino-acid transactivation domain: Establishment and prediction utilities
Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M
Genomics (2007)​ doi.org/10.1016/j.ygeno.2007.02.003
Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p
Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H
J Biol Chem (1999)​ doi.org/10.1074/jbc.274.32.22208
​
​
Collaboration:
Predicting the function and subcellular location of Caenorhabditis elegans proteins
Gurvitz A, Langer S, Piskacek M, Hamilton B, Ruis H, Hartig A
Yeast (2000)​ doi.org/10.1002/1097-0061(20000930)17:3<188::AID-YEA27>3.0.CO;2-E
Conditional Knock-down of the Mitochondrial Magnesium Channel hMrs2
Piskacek M, Zotova L, Zsurka G and Schweyen RJ
Journal of Cellular and Molecular Medicine (2009) doi.org/10.1111/j.1582-4934.2008.00328.x
​
​Functionally suppressive CD8 T regulatory cells are increased in patients
with multiple myeloma: a cause for immune impairment
Muthu Raja KR, Kubiczkova L, Rihova L, Piskacek M, Vsianska P, Hezova R, Pour L, Hajek R
PLoS One (2012)​ doi.org/10.1371/journal.pone.0049446
​
Do human B-lymphocytes avoid aging until 60 years?
Knight A, Nemec P, Bretzova S, Valkova L, Kolmanova K, Vytopilova R, Havelka M,
Vsianska P, Rihova L, Krejci M and Piskacek M
Oncotarget (2016) doi.org/10.18632/oncotarget.10146
​
Fafilek B, Balek L, Bosakova MK, Varecha M, Nita A, Gregor T, Gudernova I, Krenova J, Ghosh S, Piskacek M,
Jonatova L, Cernohorsky NH, Zieba JT, Kostas M, Haugsten EM, Wesche J, Erneux C, Trantirek L, Krakow D, Krejci P.
Sci Signal (2018) doi.org/10.1126/scisignal.aap8608
​
Hribkova H, Svoboda O, Bartecku E, Zelinkova J, Horinkova J, Lacinova L, Piskacek M, Lipovy B, Provaznik I, Glover JC, Kasparek T, Sun YM.
Front Cell Neurosci. (2022) doi: 10.3389/fncel.2022.830757